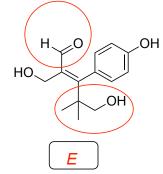
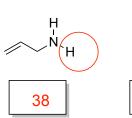
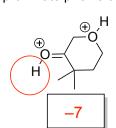

1. (9 pts) Assign the absolute stereochemical configuration (*R* or *S*) for each of the indicated stereogenic centers.

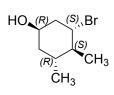



2. (9 pts) Label the following alkenes E or Z

- 3. (5 points) For each of the compounds below
- 1) circle or draw in the most acidic hydrogen
- 2) enter an approximate pKa value






10

YOU NEED TO LEARN THESE!

4. (5 pts) Draw the enantiomer and a diastereomer of the following compound and give total number of stereiosomers possible

$$H_3C$$
 (R)
 (S)
 (S)
 (S)
 (S)

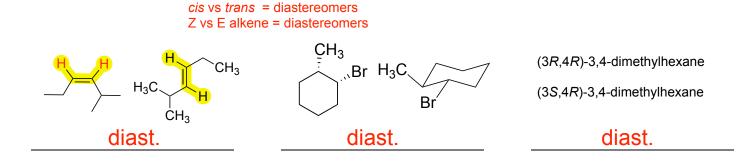
HO, (S) + 13 other options!

enantiomer

diastereomer

total # of possible stereoisomers =

$$2^4 = 16$$


5. (4 pts) Draw the lowest energy chair of the following cyclohexane.

$$H_3C$$
 H_3C
 H_4
 H_4

6. (9 pts) For each pair of compounds, label the pair as: unrelated, constitutional isomers (const), or identical (ident).

Br Br
$$H_3C$$
 Br H_2N (R) H H_3C Br H_3C Br H_3C H_3

7. (9 pts) For each pair of compounds, label the pair as: enantiomers (enant.) or diastereomers (diast.)

