$S_N 1$ vs. $S_N 2$ vs. E1 vs. E2

Factors to examine:

- 1. Steric environment of the substrate leaving group (1° vs. 2° vs. 3° vs. near 4°)
- 2. Nature of the leaving group (I⁻ vs. Br⁻ vs. H₂O vs. TsO⁻ = $^{-}OSO_2C_6H_4CH_3$)
- 3. Nature of the nucleophile/base (i.e. a strong=highly polarized/negatively charged)
- 4. Steric environment of the nucleophile/base
- 5. Temperature (higher temps generally favor elimination reactions)
- 6. Concentration of the nucleophile/base
- 7. Solvent which might promote carbocation formation (least important item)

Halide on	S _N 1	S _N 2	E2**	E1**
1°	No	Yes	Yes*	No
2°	Yes	Yes	Yes*	Yes*
3°	Yes	No	Yes*	Yes*
Allylic C	Yes	Yes	Possible*	Yes
Benzylic C	Yes	Yes	Possible*	Yes
Sp2	No	No	Depends	No

*All Elimination reactions require a beta hydrogen, which is typically on an sp3 carbon. **Must have a beta hydrogen

$S_N 1 vs S_N 2$

	Substitution on SM	Good nuc.*	Polar solvent	Good leaving group
S _N 1	Accelerates	No effect	Accelerates	Greatly accelerates
S _N 2	Slows	Accelerates	Use aprotic/polar	Accelerates

* A good nucleophile is defined as a small highly polarized (i.e. negatively charged) species.

E2 vs. S_N2**

	Sub. on SM	Small nucleophile/base	Bulky nucleophile/base	Higher temp
S _N 2	Slows	Favored		
E2	Favored		Favored	Favored
**Both E2 a	nd S _N 2 generally rec	eophile		

E1 vs. S_N1*

	Higher temp.	Large base/nucleophile	Good nucleophile
s _N 1			Favored
E1	Favored	Favored	

*Both require neutral or acidic conditions-e.g. not in NaOH or NaOEt soln.

Strong nucleophile weak base		Strong BASE Good nucleophile (1°)	Strong BASE poor nucleophile	weak nucleophile weak base
I^{\bigcirc} N_3^{\bigcirc}	R'S [⊖]	но⊖	н⊖	H ₂ O
Br ^{⊖ ⊖} CN	0	MeO [⊖] RO [⊖]	RR'N [⊂]	ROH
CI⊖	R [⊥] O [⊖]	R'₂N [⊖]	DBU	RSH
predominant mechanism	S _N 2	S _N 2 or E2	E2	S _N 1 or E1

Rough categorization of common reagents and their favored reaction pathway